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O presente trabalho tem como principal objectivo modelar os defeitos pontuais
de boro em silicio amorfo, usando um método ab initio, o cddigo de teoria da
densidade funcional — pseudopotencial (AIMPRO).

Os complexos de boro foram introduzidos em supercélulas de 64 atomos de
silicio. Os defeitos de boro foram estudados em 15 supercélulas diferentes.
Estas supercélulas foram obtidas por um mecanismo de troca de ligagédo
Wooten-Winer-Weaire por Ribeiro et al. (2010). Em média, as propriedades
das 15 supercélulas estdo de acordo com as distribuigdes radial e angular
observadas, bem como as densidades electronica e vibracional e com o
espectro Raman.

Para confirmar este método, os defeitos mais simples de boro e o
auto-intersticial no silicio cristalino foram modelados. As principais conclusdes
estdo em linha com os trabalhos de outros autores.

No silicio amorfo foi muito dificil encontrar um verdadeiro auto-intersticial, visto
que para a maioria das configuragcbes testadas, a rede amorfa sofre uma
ampla relaxagao.

Verificou-se que o boro substitutional prefere a coordenagéo 4.

Foi confirmada a existéncia intrinseca de niveis localizados de “trapping” de
buracos na rede amorfa nao dopada, que pode explicar a baixa eficiéncia da
dopagem com boro, como avang¢ado por Santos et al. (2000). Os modos locais
de vibragdo sdo, em geral, mais altos que os valores correspondentes na
estrutura cristalina.
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The main goal of the current work is to model boron related point defects in
amorphous silicon, using an ab initio method, the Density functional theory-
-pseudopotential code (AIMPRO).

The boron complexes were embedded in 64 silicon atom supercells. We have
investigated the boron defects in 15 different supercells. These supercells were
developed using a Wooten-Winer-Weaire bond switching mechanism by
Ribeiro et al. (2010). In average, the properties of the 15 supercells agree with
the observed radial and bond angle distributions, as well the electronic and
vibrational density of states and Raman spectra.

To be confident with the method, the simplest boron defects and the
self-interstitial in crystalline silicon were modeled. The main conclusions are in
line with other authors’ work.

In amorphous silicon it has been very hard to find a real self-interstitial, since
for almost all the tested configurations, the amorphous lattice relaxes overall.
We find that substitutional boron prefers to be 4-fold coordinated.

We find also an intrinsic hole-trap in the non-doped amorphous lattice, which
may explain the low efficiency of boron doping, as advanced by Santos et al.
(2010). The local vibrational modes are, in average, higher than the
correspondent crystalline values.
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Introduction

Crystalline silicon (c-Si) was first synthetized by French chemist Henri Deville in 1854 and
since then has become one of the most studied materials by the scientific community. Since
silicon is the second most available element on Earth’s surface (after oxygen), it is relatively
cheap, in comparison to other not so abundant semiconductors. However pure c-Si is very rarely
found in nature. In nature, silicon forms compounds with other elements as with oxygen in silica.

The electric properties of semiconductors are highly influenced by the existence of defects
and impurities. It is necessary to understand and control these properties in order to adapt
semiconductors to industry’s demands. This control is achieved mostly by doping the material
with atoms from other elements.

Silicon atom is a group IV element of the periodic table and when c-Si is doped with atoms of
an element from group V, it results in an excess of free electrons, which behave as charge carriers,
making it a n-type material. Using the same analogy, when doped with atoms of a group Il
element, resulting in a deficiency of free electrons (equivalent to the formation of holes), c-Si
became a p-type material. The border between the two types of materials is known as a p-n
junction, the most crucial element in all the transistors and, inherently, in most electronic devices.
Boron is by far the most widely used p-type dopant and therefore have been many studies of B
related defects in c-Si (Adey 2003a, b, 2004; Wang, 2009)

The c-Si plays a major role in the electronics industry, but its high production cost lead us to
search alternative materials with comparable characteristics. The amorphous silicon (a-Si),
especially when passivated with hydrogen (a-Si:H), in the other hand, it lacks the well know
advantages of c-Si, but it has some favorable properties of his own. a-Si can be prepared in
large-area films onto a variety of substrates at a far lower cost than its crystalline counterpart.

In the crystalline form, all the atoms are fourfold coordinated, normally tetrahedrally bonded
to four neighboring Si atoms. But in a-Si this long range order is not present and some of Si atoms
are not fourfold coordinated (Laaziri et al., 1999), existing dangling and floating bonds. The
dangling bonds act as defects in the continuous random network and are traps for charge carriers,
becoming the major drawback in a-Si application.

In the hydrogenated amorphous silicon (a-Si:H), hydrogen bonds to atoms with dangling
bonds reducing the dangling bond density. This H passivation makes the material with sufficient
low amount of defects to be used within devices, like in solar cells. However these solar cells still

offer an efficiency way behind those produced with c-Si (Zallen, 1983).
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There are many poorly understood phenomena associated with a-Si, like the low boron
doping efficiency of B-doped a-Si (Stutzmann et al., 1987) or the enhanced B diffusion in a-Si,
which is far more severe than in c-Si (De Salvador et al., 2008). Kong (2008, 2009) proposed that
the enhanced B diffusion is due to a dangling-bond-mediated diffusion mechanism, but further
studies in this and other phenomena are necessary.

In a previous work (Oliveira, 2008), the author studied the enhanced B diffusion in c-Si and in
a SiGe alloy and then it was found out that the presence of germanium atoms did increase the
migration barrier of B in agreement with experimental data (Bang et al., 2007; Cowern et al.,
1994). This finding further motived us to extend this study to other materials such as a-Si and,
perhaps in the near future, amorphous alloys like a-SiGe (Edelman et al., 2008).

To achieve this proposed objective we started by studying the basic structural and electronic
properties of B defects on the 15 different 64-atom a-Si samples, already obtained by Ribeiro et
al. (2010). Since B diffusion in c-Si is enhanced by self-interstitials (Windl et al., 1999) we also
studied this defect, both in c-Si (to establish a baseline for the study) as well as in all a-Si samples.

The lack of structural order in a-Si requires, for a successful modeling, to test different
conditions and consequently large number of computer jobs. So, for the self-interstitial modeling,
an excess of 100 analysis runs were taken, spread across different sites and conditions in all 15
a-Si samples. This simple defect was not so simple to model, as we will further realize, since
sometimes produced a new kind of amorphous structure and not the current sample with the
intended defect within.

All major boron related point defects were also modeled, once again throughout all samples,
including in c-Si. Hundreds of simulations were taken for all defects. We tried to replace the Si
atom by a B atom in different conditions; in order to determine its preferable atomic
coordination. We also focused our attention to the boron-silicon pair, in hopping to start to
understand the B diffusion in a-Si (Kong et al., 2008). In all previous simulations and when
needed, spin polarization was performed.

In the following chapter we describe the main theoretical framework of the density
functional theory. The modeling of the boron defects in the crystalline silicon is the subject of the
chapter 2. The method for creating amorphous samples and the study of boron defects in

amorphous silicon is discussed in chapter 3.

Ab Initio Modeling of Boron Related Point Defects in
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Chapter I
Theoretical Framework

1.1. The many-body problem

All the properties of a quantum mechanical system are within a wave function W which
obeys the Schrodinger equation

HY = EV (1.1)
where E is the total energy of the system. The Hamiltonian operator (7:() contains both kinetic

(f) and potential terms (I})lfrom N, electrons and N, nuclei of the system,

7:(:]’:;‘+f:t+l}ee+l}en+pvnn' (12)
where
N 1 e
I,=—=>V; (1.3)
2 l ’
R Moo
I,=-)—V, (1.4)
P 2Ma !
A | 1
V,=— (1.5)
i#}
N,,N,
A e n Z
V =- — 1.6
en lél |rl _Ra ’ ( )
1 ZZ
V== £ (1.7)
2. 54(R, R, |’
a#f

M,, Z, and R, represent the mass, charge and location of the a-th nucleus and r, the

coordinates of the i-th electron. Indexes n and e denote the nuclear and electronic terms,

respectively. Thus, the wave function of the system is

¥(r,R)= ‘P(rl,sl,...,rNe,sNe;Rl,...,RN

n

) (1.8)

! Note that all guantities herein are expressed in term of atomic units unless stated otherwise.
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where s is the electron spin. Therefore W is function of 3N, +4ZaZa scalar variables, which

implies that solving even the simplest problem is impractical, even with the fastest and more
powerful computers currently available. It became necessary to find a method by means of

approximations, always bearing in mind the need to maintain the reliability of results.

1.2. The Born-Oppenheimer approximation
Since the mass of an electron is several orders of magnitude less than the mass of the
nucleus it is reasonable to assume that the electrons react instantaneously to the movement of
the nuclei. Born and Oppenheimer (1927) thus proposed that the total wave function ‘P(r,R) is
given by
¥(r,R) =y, (r)®(R) (1.9)

where . and @ represent the wave functions of electrons and nuclei, respectively, and the

index R indicates that the electronic wave function is determined for a given fixed configuration
of nuclei.
Combining the last equation with the Schrodinger equation (1.1), we get the equation

involving electrons,

(747, +V,, )y (r) = Ege (¥) (1.10)
and the equation involving the nuclei,
(7, +7,,+E.(R)+C(R))®(R) = E®(R), (1.11)
where
C(R) =Y [O(R) Vv (1) 27,14 (1) V.0 (R 112

This term C(R) , for the majority of cases, is almost negligible due to the heavy mass of the

nuclei. The Born-Oppenheimer approximation considers C(R) =0. The electronic state of the

n-body problem is usually defined after a determined function y, for a fixed set of atomic

positions.
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Theoretical Framework 5

1.3. Variational principle

There are two distinct methods of obtaining a stationary solution of the Hamiltonian — a grid
method and a variational method. The first integrates a Schrédinger wave function using discrete

methods, while the second uses a variational principle as described here. In this method, there is

hand-picked subspace {¢1,...,¢M} from the Hillbert space to get a rough function ‘Papp of the

wave function ¥,
M
YoV, =D cd. (1.13)

The variational principle states that the expected value for the total energy E, functional of

the wave function ¥ has a minimum value,

app ’

wop (1.14)

. _I‘Pzppﬂ‘l’appdr
[ ¥ ]= j YW, dr

Hence the approximated value of the total energy is

By = E[Tapp] = {i cc,H, }/{i C;C,/Si/}' (1.15)

i,j=1 i,j=1

where H, = J.¢i*7%¢jdr and S, = J.¢[*¢jdr. For the ground-state the derivative of E_ with ¢,

should vanish implying that,

M=

> (H,~Ey,S,)e, =0, fori=1...M. (1.16)

J

1.4. Hartree-Fock Theory

Taking into account the Pauli principle, the electronic functions in (1.13) must be
antisymmetric. Conveniently, using single-particle wave functions, the antisymmetry may be
obtained in the form of a Slater determinant (Slater, 1929),

vi(r) - wa(n)
det| : : : (1.17)

‘//1(7]\/) l//N(rN)

v ()=
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The determinant ensures the antisymmetry since exchanging two of the single electron

spin-orbitals will change (r) by a factor of —1 while the presence of two identical
spin-orbitals will result in (r) =0.

Considering l,//l];[F (r) a solution to the Hamiltonian from the system in (1.10) and (1.11),

minimizing the total energy, subject to the orthogonality condition J‘l//:l//jd7'=5ij, gives the
Hartree-Fock equations (Mc Weeney, 1989; Thijssen, 1999),
n N
Fl//i(l’)zzgijl//j (r). (1.18)
j=1
The Fock operator Fis given by,
F=h+j-k (1.19)

in with J.!//l.*hl//l.dl" = H, includes the kinetic energy from the electrons and the potential energy
from the electron-nucleus interaction. The potential energy from the interaction between

electrons is translated by the terms j and £k,

SR TACIACY,
= Lo/ d 1.20
/ ;I |I‘1 _r2| E ( )
and
F l//;(rz)l//k(rl)
k= ;j—h -y dr, . (1.21)

The term } expresses the mean Hartree field and k expresses the exchange field, which arises

due to the antisymmetry of the wave functions.
The matrix & in equation (1.18) is composed of Lagrange multipliers from the minimization

process. The diagonal elements are given by,

F

& =& :<lr//i l//i>:Hi+i(Jij _Ki/') (1.22)
=1

which results in the following expression for the energy of the system,

N N
E=Z«%— Z(Jij_Kij) (1.23)
i,j=1

i

N |~
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Theoretical Framework 7

It is typical in a computational implementation of the Hartree-Fock theory that the

spin-orbitals y, are expressed as a linear combination of the atomic orbitals. After careful choice

of aset of M functions g, (r),

M
v, (r)=2 ¢4 (r) (1.24)
The matrix form of the Fock equation leads to the generalized eigenvalue equation, known as

the Roothaan equation (Roothaan, 1951),

F-c_. =g<S'c_. (1.25)

where S is a M x M matrix, S, = <¢l ‘¢]> The last equation is solved self-consistently until the

both the wave function and the corresponding total energy converge. Koopmans (1934) gave

physical meaning to the eigenvalues¢; .

1.5. Density Functional Theory

The Density Functional Theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965),
considers the total energy as a functional of electron charge density n(r) rather than a

composition of single electron wave functions as in the Hartree-Fock theory.

n(r)= 2\% (r)f (1.26)

1* Hohenberg-Kohn theorem The external potential is a unique functional of the electron charge

density n (r) (Hohenberg and Kohn, 1964).

The total energy of the system is given by,
E[n]= F[”]JFI%ﬂ (r)n(r)dr (1.27)

where v, is the external potential experienced by electrons due to, for example, the

nucleus-electron interactions, and F is a system-independent functional that takes into account
the electron kinetic energy, the Hartree energy, the electron correlation energy and the

exchange-correlation energies.
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2" Hohenberg-Kohn theorem For an electron charge density ﬁ(r) such that ﬁ(r)ZO and

Iﬁ(r)dr = N, the ground state energy E, is the lowest energy value (Hohenberg and Kohn,

1964),

E,<E[q]. (1.28)

A significant simplification comes from the use of the electron charge density, since this
method, unlike the Hartree-Fock theory, has no approximations. However the contribution of

exchange-correlation to the functional F keeps being non-local and usually unknown.

1.5.1. Kohn-Sham equations

Implementing DFT transforms the Schrodinger equation for many electrons [equation (1.10)]
in a system of single-particle equations, which are the Kohn-Sham equations (Kohn and Sham,

1965),

1 Z n(r' OE..|n
——Vi-) = +J. ( ? d3r’+L[] v, (r)=¢cy,(r), (1.29)
2 ” |r—Ra| |r—r| on(r)
where the charge density # is obtained from (1.26).
The first three terms of the equation (1.29) express the kinetic energy, the external potential
imposed by the ions (nuclei) and the Hartree energy, respectively. The fourth term adds the

effects of the remaining bodies in the system in the form of an exchange-correlation functional.

The strength of DFT comes from the fact that there is a universal density functional E,. (which

depends solely on the electron charge density n) allowing the exact solution of the charge
density and total energy of a system in its ground-state to be obtained.
The total energy functional for a system with many electrons is given by (Parr and Yang,

1989),

E[n]=3 e, I [n]+ Ee[n] - [Vic [n]n(x) dr (130)

A=1

In equation (1.30), the Hartree energy and the exchange-correlation potential (J and V.,

respectively) are given by

J[n] =%I%drdr’ (1.31)

Ab Initio Modeling of Boron Related Point Defects in
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Ve [n] Z(ZE;—EF;]- (1.32)

The Kohn-Sham equations (1.29) are solved self-consistently, until convergence is achieved.
First, an initial charge density is chosen and equation (1.29) is solved. The resulting eigenvectors
serve as a starting point for the equation (1.26), generating a new charge density, repeating the
cycle again, until it is found that the charge density does not change significantly, so the method is

self-consistent.
Until know the DFT is still exact but the exact form of £, is unknown. Some approximations

are currently used to overcome this. In fact, the demand for the exact form of this functional still
remains an actual research topic (Doren et al., 2001, Tao et al., 2008).

The previous formalism neglects the dependence of the electron spin, apart from the term
E .. Considering the electron charge density as the superposition of spin-up and spin-down
charge densities n(l‘)znT (r)+ni (r), the spin is then accounted for (von Barth and Hedin,

1972; Rajogopal and Callaway, 1973).

1.5.2. The exchange correlation functional

A common approach to circumvent the problem of not knowing E . is called the Local

Density Approximation (LDA) and the one that considers the electron spin is the Local Spin
Density Approximation (LSDA) (Kohn and Sham, 1965; von Barth and Hedin, 1972; Perdew and

Zunger, 1981). The exchange-correlation energy is assumed to be local and usually distinguished

in two contributions, the exchange energy £, and correlation energy E. :

EXC[nT,nJ:EX[nT,nJ+EC[nT,n¢], (1.33)

using LSDA notation. The analytical form of the exchange functional of a homogeneous electron

gas is (von Barth and Hedin, 1972),

E :—Eiv3 BB 1.34
X[”T’m] 2\ a7 (”T +”¢) (1.34)

The correlation term is more complex because it involves the use of the perturbation theory
for a high-density regime (Perdew and Zunger, 1981), while for low density the Monte Carlo

method is used, applied to a Green function (Ceperly, 1978; Ceperly and Alder, 1980). Several
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functional in the parameterized form have been presented by Perdew and Zunger (1981) (PZ),
Vosko et al. (1980) (VWN) and Perdew and Wang (1992) (PW).

A more accurate estimate of the exchange-correlation energy is obtained by taking the first

order expansion of E,. in charge density and thus includes the terms dependent on the gradient

of charge density Vn (Perdew, 1991; Perdew et al. 1996a, b). This method is known as the

Generalized Gradient Approximation (GGA).

1.6. Pseudopotencials

The chemical properties of an atom are almost exclusively due to the valence electrons and
their interaction with the atoms, while the core states are relatively independent of the
environment where the atom is. The core electrons may be eliminated in the system equation,
considering that valence electrons in each atom interacting with the nucleus and the core
electrons via an effective potential, called pseudopotential.

The use of pseudopotentials has the advantage, compared to calculations using all electrons,
of reducing the number of electrons to treat, since the core electrons are not considered.

Detailed information on the pseudopotencial method has been extensively reported
(Harrison, 1966; Brust, 1968; Stoneham, 1975; Heine, 1970; Pickett, 1989).

The calculations presented in the proceeding chapters employ the Hartwigsen-Goedecher-

Hutter (HGH) pseudopotentials (Hartwigsen et al., 1998).

1.7. Boundary conditions

Putting a defect in a supercell has a major consequence. The objective is to model the defect,
but in the supercell run, the defect is replicated for each cell, consequence of the periodic
boundary conditions. Note that this happens whether the defect is modeled in c-Si or in a-Si and,
particularly in c-Si, does not matter where we put the defect — in the case of a substitucional
impurity with an offset of or implicates that all the replicas of that impurity will be moved
fowling the same vector. If the supercell does not have an adequate size or volume, some
non-realistic defects may occur, mainly caused by elastic, coulombic, dipolar or quadrapolar
interaction between replicas of the defects. Calculations presented in the proceeding chapters all
employ the supercell method. Supercells of 64 atoms where tested and found to give converged

results.

Ab Initio Modeling of Boron Related Point Defects in
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The AIMPRO code can also implement the cluster method where the cell is not replicated. In
this run, the interactions between defects do not occur but an unintended interaction between

defect and the surface is common.

1.8. Basis functions

The AIMPRO LDA DFT code used throughout this dissertation employs a real-space Gaussian
type basis set (Jones and Briddon, 1999). One problem with the supercell approach however is
that the requirement of integration over the Brillouin-zone (BZ) makes an expansion of the wave

function in a reciprocal space necessary.

Block basic functions B, (r) are constructed from Gaussian functions’¢, centered at the

atomic sites R, with N, lattice vectors L,

B(F)== T (r-R ~L, ), (135
L n

where K is a reciprocal space vector within the BZ. The localized orbitals are given by,
/ / L —a(r-R,)
#,(r)=(x-R,) (y-R,) (z—R,) ™), (1.36)

with s-, p- or d-like orbitals corresponding to Zili =0,1 or 2. The Kohn-Sham orbitals y, , are

then expanded over all Bkl. (r) basis functions,

W, (r)= chﬂ,[Bki (r) (1.37)

with the KA pair labeling the state. The charge density is readily obtained as

n(r)=2 b,(k)B; (r) B, (r) (1.38)

i,j.k
by (K) =D S G (1.39)
A

where f,, is the occupancy of the KA state, and this should be 2 for a filled level and 0 for an

empty one.

2 . . .
Expressed in Cartesian coordinates.
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The advantage of Guassian-like functions is that their integrals can be found analytically, in
contrast to another popular choice of basis functions (Jones and Briddon, 1999). However, they

are not orthogonal, and over-completeness can induce numerical instabilities.

1.9. Brillouin-zone sampling

In the supercell method, integration over the Brillouin-zone is required in the calculation of

physical quantities like total energy, charge density or density of states, amongst others. The
integrand function f(k) is periodic in reciprocal space, and has no simple analytic form. Several
schemes were proposed to avoid numerical integration over a dense mesh. In the scheme from

Baldereschi (1973) and Chadi and Cohen (1973), one or a set of N special k;-points can be used

to obtain the average f over the BZ of volume (27[)3/Q, where

= QJf(k)dkziif(ki). (1.40)
(27r) N5

A clearer scheme was proposed by Monkhorst and Pack (1976); Pack and Monkhorst (1977)
(MP) because the last method, despite the obvious advantages over a full integration, did not
provide an obvious way of checking the convergence of the calculations.

In the MP scheme the special k-points are a grid of /xJxK points in reciprocal space

given by,

k(iajak):uigl tu,g, +ug; (1.41)

where g,, g, and g, are the reciprocal space unit-vectors and u,, u; and u, are given by,

u,=(2i-1-1)/21, (i=1..1) (1.42)
u;=(2j-J-1)/2J, (j=1...J) (1.43)
u, =(2k-K-1)/2K, (k=1,..,K) (1.44)

with 7, J and K >1. When I =J =K the sampling scheme is referred to as MP—1".
Convergence is ensured by increasing the values of 1, J and K until the calculated value or
property of interest does not change significantly.

In a high symmetry supercell some of the k-points may be equivalent due to the symmetry
operations associated with that supercell. In this case the redundant & -points may be removed

and the equivalent one that is left will be weighted accordingly.
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In the proceeding chapters a 2° MP sampling scheme was used, except otherwise noted.

This MP sampling showed sufficient convergence.

1.10. Ewald summations

Series like l/rp with p <2 converge very slowly as » goes to infinity and so to calculate
Coulombic and dipolar interactions it is necessary to evaluate slowly converging sums. To solve
this problem, Ewald (1921) proposed a method in which the series is split into a fast-converging

and slow-converging parts,

Z:Lp:Zerfc(poer)jLZ:erf(jer) (L.45)
L l"L L I"L L I"L

Evaluation of the first term is straightforward as erfc(x) converges to zero when x — .

The last term, slowly converging in real-space, is Fourier transformed, and as a consequence its
terms are now sort-ranged and fast converging in reciprocal space. The parameter & controls the
transition between the real-space and reciprocal-space sums. Although the analytical result does
not depend on the choice of « in practice this is not the case. This is a consequence of the sums
only covering a finite set of lattice vectors. An extensive treatment of this method was given by
Leeuw et al. (1980). This method is used in AIMPRO to separate and include the local and

non-local contributions of the pseudopotencial.

1.11. Calculation of observables

The DFT is an exact ground-state theory. Thus, the properties of excited states (including
unoccupied electron energy levels) are outside the scope of DFT calculations. In fact it is the
subject of the time-dependent DFT (Runge and Gross, 1984; Marques and Gross, 2004). However
there are many fundamental properties that DFT can successfully model and whose objectives are
to predict or confirm the experimental data. This section explains how the most important of

these properties are obtained.

1.11.1. Local structure / Forces

Once the Kohn-Sham equations are solved for a charge density of a consistent configuration

of atoms is desirable to know what forces act on each atom. The force F/, exerted on an atom is

simply equal to =V E (Hellman-Feynman’s theorem) (Hellmann, 1937; Feymann, 1939) and thus
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slightly displacing every atom of his position, and calculating AE', the force exerted on each atom
can be calculated.

Varying the position of the ions causes a variation of the charge density which can cause two
results: a change in b, (k) and a change in the basis functions B,;. Once all contributions to AE

are considered, from the force acting on each atom, it is known that the atoms can move
according to these forces. In an iterative way, this movement is made until the variation of forces
and the change in total energy are negligible. It is said then that the structure is relaxed. The
AIMPRO makes use of a conjugate gradient algorithm, which means that the atoms are moved in
the direction where there was a component of the forces obtained in the previous iteration, as
well as along the component of the forces obtained in the current iteration. The distance that the
atom moves in this direction is chosen approximating a cubic or quadratic function that expresses
the energy variation with position. But it is important to stress that this simplistic approach
implies that the relaxed structure will be located in a local minimum of the total energy surface.
There is no guarantee that is located in the global minimum. To ensure, as far as possible, that the
structure is relaxed in a global minimum is necessary to initiate the structural optimization from

several different initial configurations.

1.11.2. Total Energy

One of the most fundamental properties of a system is it total energy E., equation (1.30). It

is frequently used to compare the energy of similar systems. In this case a similar system is that
containing the same number of atoms of each species (defined by the corresponded
pseudopotential) and the same overall charge. If these conditions are not met then it is necessary

to compare formation energies instead.

1.11.3. Derived Properties
Formation Energy
The chemical potential £, of a species s is defined as the derivative of the Gibbs free energy
(Reif, 1965; Flynn, 1972),
G=E+PV-TS. (1.46)
Under thermodynamic equilibrium, g is equal over the entire system, regardless of any

differences in phase and hence is equivalent to the free energy per particle. Neglecting the term

Ab Initio Modeling of Boron Related Point Defects in
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PV which is small for solid state reactions and the term —7.S that is quite small at low

temperatures, the formation energy is given by,

E,=E +qu,— Y nu, (1.47)

where E. is the total energy of the system, ¢ is the system’s charge state, n, is the number of
atoms of species s and g is the chemical potential corresponding to that species. The electron
chemical potential x, is usually taken to be,

u,=E, +E, (1.48)

where E,. is the Fermi energy relative to £, which is the energy of the highest occupied orbital,

usually taken from the Kohn-Sham levels. Alternatively £ can be obtained by comparing

ET(qz—l) to ET(q:O).

The formation energy is a quantity that provides access to a great deal of information. By
taking into account the chemical potentials, it is possible to compare supercells of different sizes
and to compare the stability of defects containing different numbers of each species (useful to
calculate binding energies). Comparing the formation energy of a given defect, for different
charged states, gives the electrical levels. The formation energy can also be used to calculate the

solubility of a defect.

Binding Energies
When a defect can be considered to be formed by two or more primary defects it is often

useful to know what the cohesive energy is between the constituents. The binding energy E, of

the complex C formed by two constituents 4 and B is given by

E,=E}+E} ~Ef (1.49)

where E/f and Ef are the formation energies of the constituents that make up the complex C

and Ej‘,j the corresponding formation energy of the complex.

An alternative way to calculate the binding energy is to build a series of supercells in which
the constituents 4 and B are initially close together (in the form of the complex C) and in the
following cells they are gradually separated. By comparing the energies of these supercells, we
obtain the energy as a function of separation 4 and B. If the energy reaches an asymptotic limit

for greater separation then the binding energy is the difference between the energy of the
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supercell containing separate 4 and B, and the energy of supercell containing the complex C.
This method is more accurate than the method using the formation energy, especially when the
supercells are equally charged, as is usually the case, since to first order the strain and the
quadrupolar interactions between neighboring cells will be equal for each separation and hence

cancel each other out.

Migration Energy

The basic principle to determine the migration energy of an atom or complex is extremely
simple. The AIMPRO is capable of implementing several methods for this calculation, yet the NEB
(Nudged Elastic Band) method is by far the most commonly used.

The NEB determines the lowest energy path between an initial and a final configuration of
atoms. This path is very important in the study of the diffusion of defects and is often called

minimum energy path (MEP).

Fig. 1 Contour plot for the energy surface with R and P configurations represented.

Considering the relaxed configurations R and P, we intended to determine the MEP in this
case. To start the algorithm that implements the NEB in AIMPRO, it is necessary to define settings
and intermediate between, for example, by simple linear combination (dashed path in figure 1).

This method considers that all configurations between R and P, including these, are linked
by a force with elastic constant k # 0. Iteratively, NEB runs thru all the initial images (initial path)
and evaluates a new position for the intermediate configurations (images) taking into account
two criteria: a) the force acting perpendicular to the path between the images and b) the cohesive
elastic force that keeps the settings in the path. Gradually these operations will bring the desired

method to the MEP (non-dashed path in figure 1).
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path

Fig. 2 Minimum Energy Path (MEP).

The representation of the MEP determined by NEB (figure 2) shows a diffusion barrier. The
height of the energy barrier E,, is the migration energy of the defect. However this method has

the same problem regarding the local minimum, as discussed earlier. To ensure that the
appropriate MEP was reached, we must repeat the process for different initial paths (i.e., for

different initial images).

Thermal stability

Many experimental techniques are able to observe at what temperature a defect disappears,
so it is desirable to estimate the thermal stability of a defect. Assuming that a complex, when
subjected to heat treatment (annealing), dissociates and does not undergo any reaction with
other mobile species at the annealing temperature, it becomes straightforward to estimate the

thermal stability. The rate at which the complex dissociates is

-E
R= 4 1.50
VeXP( T j (1.50)

where Vv is a given frequency, k is the Boltzmann constant and 7' is temperature. E, is the

activation energy of the defect, which is approximately the sum of the formation energy of the
defect and the migration energy of the species that diffuses, and can be calculated using the
AIMPRO. The frequency in (1.50) is usually the Debye frequency, another property that can be

determined by means of ab initio modeling, however this operation is a complex one.
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Electrical levels
The formation energy of charged defect is a function of the electronic chemical potential or

equally to the Fermi level. The formation energy of a complex or defect can then be calculated as

a function of E,. for different charged states. For a given value of E,., one of the states will have
the minimum energy value, thus being the most stable. The value of E,. for which two charged
states are equal in energy corresponds to an occupancy level. In other words, the energy value
E, for which E, (q) =E, (q+1) corresponds to the level (q/q+l) of the defect. When E,. is
greater than its critical value, the defects will be at the charged state g and when £, is at its
lowest value, the defect will be at the charged state (q+1). This method for calculating the

energy levels is known as the Formation Energy Method.
However it is customary to use the Marker Method (Coutinho et al., 2002). This method was
used in this dissertation and it can calculate the electrical levels with a better precision by solving

the following equation,
E, (q)—Ed (q+l)+Ed (q/q+1) =k, (q)—Em (q+1)+Em (q/q+1) (1.51)

where E, (q) and E, (q+l) are the energies of defect in states ¢ and (q+1). E, (q/q+l) is

the position of the (q/q+1) level of the defect. £, (q) and £ (q+1) are the energies of the
marker defect in the respective states. Ideally the defect marker must have similar electrical
properties to the defect under study and should have a level (q/q+l) whose energy

E,(g/q+1) is known. Knowing the value E, (g/q+1) and calculating E, (q), E, (q+1),

E,(q) and E,(g+1) the equation (1.51) is solved and the value of E,(g/q+1) determined.

Often the Marker Method has a numerical error not greater than 0.2 eV. This method is however
more reliable due to the cancellation of the errors that arise from interactions between

supercells. The calculation of electric levels is critical to identify electrically active defects.

Vibrational Modes
The vibrational modes of a crystal or defect are given by the system’s dynamical matrix D

(Born and Huang, 1954) by solving the eigenvalue problem

D-U=0'U, (1.52)
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where the 3N eigenvalues @ are the square frequencies associated with the 3N normal
modes U . Each normal mode is a 3N dimensional vector describing the motion for all N atoms

for that mode. The 3N x3N elements of the matrix D are given by,

1 OE |

D
MM, du,u,|
i J a 7900

ab(i’.j)z

(1.53)

where @ and b are any of the three Cartesian coordinates and u, and u, are the

displacements of atoms having mass M, and M]. respectively, in those directions.

The calculation of the second derivatives in equation (1.53) is achieved by the following
numerical method. First, the supercell must be relaxed, turning all the forces effectively to zero.
Then the atom i is moved a small amount & (~ 0.025 a.u.) along the Cartesian direction a. The

new charge density is then calculated and from that the forces, now different from zero since the

structure has been perturbed. We label fbj (a,i) as the new component of the force that act on
the atom j, in the Cartesian direction b. The atom i is then moved the same distance in the
opposite direction —&a, resulting in a force ]‘b;(a,i). The second derivative of the energy is
then,

PE| o e o
6um§ujb‘0 ou,, Ou, Ou,

_Jy(ai)=fy (i)
()= asa

a

This way of computing the second derivative of energy includes some non-harmonic
contributions. For this reason, the frequencies obtained in this manner are often referred to as
quasi-harmonic frequencies (Jones et al., 1994).

When the impurities, such as boron in silicon, are lighter than the atoms of the network, the
vibration modes are greater than the crystal. In this case we get a local vibrational mode (LVM)
where only the impurity and its nearest neighbors vibrate. Therefore, we get great results by
taking into account only the second derivatives for the impurity and its nearest neighbors.

The vibrational modes of a defect can be calculated and compared with results of infrared
spectroscopy and photoluminescence. As the frequencies of vibration modes are extremely
sensitive to the structure of a defect, if we compare the experimental data with the modeled one,
and they are consistent then there is a strong possibility that the observed and modeled structure
are the same. Advances in the study of isotopic impurities and pressure effects have led to better

identification of defects.
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Chapter II
Boron Defects in Crystalline Silicon

Boron is the most important p-dopant in silicon, therefore boron complexes in crystalline
silicon has been investigated, using DFT computational codes (Adey, 2004). One of the most
successful and employed in boron c-Si studies is the AIMPRO code, which has been developed for
the last 20 years by R. Jones and P. R. Briddon.

Whatever, very few studies have been conducted in a-Si using DFT codes. To guide the
studies of boron a-Si is essential to understand the basic principles of ab initio studies in c-Si so we
hope to carry out successful studies in amorphous materials. In this chapter the simplest, but
convenient, boron complexes in c-Si are reexamined, and the study of B related defects in a-Si is

the subject of the next chapter.

2.1  Supercell characterization

Fig. 3 64-atom cubic silicon supercell.

The boron defect embedded in a 64-atom supercell (figure 3) was used in the proceeding
simulations. The silicon and boron species was characterized by the respective HGH
pseudopontential (Hartwigsen et al., 1998). As stated in the last chapter a 2 X 2 X 2 MP sampling
was used. All the studies were performed using LDA, but when needed, a spin polarization was

applied.

State equation
The AIMPRO enable us to calculate all variables in the Birch-Murnaghan equation of state

(Murnaghan, 1944; Birch, 1947),
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), ey s,

E[V]=E .
[V]=Eo+ B -1 B, B,-1

(2.1)

In the previous equation, V' is the volume of the supercell, B, = —V(GP/@V)T is known as

the bulk modulus and Bj its first derivative over pressure. The table below show that all obtained

parameters are in agreement with previous calculated and experimental data.

Table 1 Calculated parameters for c-Si compared with previous calculated (Oliveira, 2008) and experimental
data. The determined lattice constant a, is compared with the experimental value from James and Lord
(1992). The experimental value for bond length r, was taken from Brenner et al. (1991). The bulk modulus
and its derivative are compared with experimental data from Singh (1993) and Beattie and Schirber (1970),
respectively.

Parameters calculated Oliveira (2008) experimental
a, (A) 5.39 5.40 5.43
7 (A) 2.34 2.34 2.35
B, (GPa) 96.65 94.60 97.9
B, 4.12 3.94 4.09

Band structure

As shown in the figure 4, AIMPRO package is able to determine the band structure. Our
calculation for c-Si is in agreement with other calculations like the one determined using the
non-local pseudopotential method by Chelikowsky and Cohen (1976). The indirect band gap in c-Si
is reproduced, but the energy gap is underestimated (proximally 50% underestimation), which is a
well-known DFT drawback. In this case a 0.52 eV band gap was determined against the ~1.15 eV

experimental value (Low et al., 2008).

Energy (eV)

k-vector

Fig. 4 c-Si band structure. G, K1, K2, K3, K4, X, Y and Z corresponds to k-points (0,0,0), (}4,%,%),
(-%4,%,%), (-%4,-%,%), (%4,-%,%), (+,0,0), (0,%,0) and (0,0,%) respectively.
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2.2  Self-Interstitial

The diffusion of impurity atoms in silicon is highly influenced by intrinsic defects such as
self-interstitials and vacancies. In particular Si self-interstitial is known to enhance the B diffusion
(Windl et al., 1999). Therefore it is of great importance to improve our understanding of the

behavior of these defects.

Si

i

\,\J

JJJJ

Fig. 5 Common self-interstitial configurations: hexagonal configuration (Si/), tetrahedral configuration (Si;")
and split-<110> interstitial. Interstitial silicon atoms highlighted in green.

The silicon self-interstitial configurations that gather more consensus are shown in figure 5.
Others less understood configurations, but more energetic, like the “caged” interstitial (Clark and
Ackland, 1996, Jones et al., 2008) was not subject of study. The hexagonal interstitial (Si) is
6-fold coordinated with bonds of length 2.37 A joining it to six neighbors, which are therefore
5-fold coordinated. The tetrahedral interstitial (Si;’) is 4-fold coordinated and has bonds with
2.44 R of length. It is bonded to its four neighbors, which are therefore 5-fold coordinated. In the

split-<110> interstitial (Si;~"'"”

) the two atoms forming the defect are 4-fold coordinated, but two
of the surround atoms are 5-fold coordinated. This common dominator from all interstitial
defects, which is that the neighbors atoms of interstitial defects are 5-fold coordinated will help
identifying these defects in the amorphous samples where apparent order cannot be found.

The formation energy for the self-interstitial defect in silicon may be calculated using the

following equation (directly obtained from equation (1.47)),

65

E,(Si)=E, (Siﬁs)—6—4ET (Sig, ) - (2.2)

The results are presented in Table 2. We found out that the split-<110> interstitial have the
lowest formation energy amongst all studied defects, in agreement with the findings from several

authors (Zhu et al., 1996; Leung et al., 1999; Jones et al., 2009).
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Table 2 Formation energies for all studied interstitial configurations compared to previous ab initio studies.
Kong (2008) used 64-atom supercells and Leung et al. (1999) 32-atom supercells. All quantities are in eV.

configuration calculated Kong (2008) Leung et al. (1999)
Si 3.63 3.87 3.31
Si’ 3.77 - 3.43
it 3.51 3.90 3.31

1

An undesired effect can occur when the <110>-split interstitial is simulated in smaller
supercells (64 atoms or lower). Since the <110>-split interstitial creates larger stress field in its
neighboring Si lattice, in comparison to the others interstitial configurations, which may not be
able to relax fully at a smaller supercell (Zhu et al., 1996). This may explain why Kong (2008)

obtained lower formation energy for the hexagonal interstitial configuration.

2.3 Boron related point defects

2.3.1 Substitutional Boron

Fig. 6 Substitutional boron configuration. B atom in pink.

Under equilibrium conditions and the limit of low B concentration, B atoms occupy
substitutional sites in a c-Si lattice (figure 6). As expected, since the B atom has a smaller atomic
radius than the Si atom, the first-nearest-neighbor Si atoms relax towards the substitutional B
atom by about 12%.

The local vibrational mode where calculated for substitutional boron (B,). The °B mode is at

633 cm™ and B at 610 cm™, with an isotopic deviation of 23 cm™. These modes show good
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agreement with experiment (Smith and Angress, 1963): 646 cm™ and 623 cm™, respectively, and
in excellent agreement for the isotopic shift.
The band structure of this defect was also calculated in the same way as in the bulk. The half

occupied level is marked in red in figure 7.
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Energy (eV)

k-vector

Fig. 7 Band structure for substitutional boron. In the neutral charge state the black lines represent filed
levels, the dashed lines represent empty levels and the red line is a half occupied level. G, K1, K2, K3, K4, X,
Y and Z corresponds to k-points (0,0,0), (}4,%,%), (-%,%,%), (-%4,-%,%), (%4,-%,%), (¥4,0,0), (0,%,0) and (0,0,%)
respectively.

Using gallium as the marker species in the marker method (Coutinho et al., 2002) the (-/0)
electric level for substitutional boron was placed at 32 meV above valence band. Experimental

technique (Madelung, 1996) placed the same level at 45 meV/.
2.3.2 Interstitial Boron

A similar approach to model the Si self-interstitial was taken in order to model the interstitial
boron. The same interstitial configurations (tetrahedral, hexagonal and split-<110> interstitials)

were tested in the neutral charged state by replacing the previous Si interstitial with a B atom.

B(l 10)

1

Fig. 8 Common interstitial configurations: hexagonal configuration (B,”), tetrahedral configuration (B,’) and
split-<110> interstitial. Interstitial boron atoms highlighted in pink.
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The hexagonal (BI.H) retained similar structural features from the self-interstitial

configuration. The tetrahedral (BI.T) configuration relaxed towards an atom from the lattice,

making a smaller bond (2.05 A) than the remaining 3 neighbours (2.45 A). Regarding the
<110>-split, the minimum energy structure has a small distortion due to the B-Si bond lengths
becoming slightly shorter (1.95 to 2.1 A) than the Si-Si bonds.

The binding energy of the tetrahedral defect is 0.28 eV, in good agreement with the interval
of 0.2-0.3 eV established by Hakala et al. (2000).

The formation energies for this configuration were determined to be 0.46, 0.48 and 0.48 eV
for the BiH, BiT and Bf”o> , in general lower than the ones by the previous study, which indicates

0.58 and 0.98 eV for the hexagonal and tetrahedral configurations.

2.3.3 Substitutional Boron - Silicon Interstitial

According to Hakala et al. (2000) all these interstitial configurations (BiH, BiT and Bl.<110> ) are
meta-stable and have formation energies between 0.24 to 1.34 eV greater than configurations
with boron in a substitutional site bonded to a silicon interstitial (B, —Si;). We modeled this
defect in the same tetrahedral, hexagonal and split-<110> configurations. Regarding the
B, —Si", the structural relaxation resulted in the B, —Si, configuration. Our results are in
agreement with Hakala et al. (2000) findings, being the difference of the formation energy for the

tetrahedral configurations B/ and B, —Si equal to 0.90 eV and the difference for the Bf'10>

and B, - Si" equal to 0.15 eV,
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Chapter III
Boron Defects in Amorphous Silicon

3.1 Supercells generation and characterization

Throughout the years, many attempts have been made to model the structure of a-Si, but
this earlier models suffered from some drawbacks. One of the earliest models, Polk (1971) and
Polk and Boudreaux (1973) seemed satisfactory in its main features, mainly its concordance with
experimental data for the radial distribution function (RDF) of a-Si (Moss and Graczyle, 1969). But
since this method was cluster based, it suffered from the awkward problems posed by free
surfaces. It was a hand-built model so it also suffered from the bias inherent of this build
procedure. The model from Henderson (1974) was also a hand-build model but eliminated the
surface problems by including periodic boundary conditions. Guttman (1981) has devised a
method with periodic boundary conditions but for relatively large supercells (over 200 atoms) the
obtained RDF was not in good agreement with experimental data.

The Wooten-Winer-Weaire mechanism (also known as WWW bond-switching) (Wooten et
al., 1985) addresses the previous issues with a simple solution. The model starts from a diamond
structure with periodic boundary conditions build in from start. Then the structure is repeatedly
rearrange by the process illustrated in figure 9, in which tetrahedral bonding is preserved. If
enough random rearrangements of this kind are performed, a random-network structure is

produced and all identifiable features of the diamond cubic structure will disappear.

(a) (b)

Fig. 9 Local rearrangement of bonds used by the WWW model to generate random networks from the
diamond cubic structure. (a) Configuration of bonds in the diamond cubic structure. (b) Relaxed
configuration of atoms for a single pair defect.
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The WWW bond-switching produces structures of any size with good agreement with
experimental data. That has been some adaptations of the WWW mechanism over the years,
some in order to prevent the creation of dangling and floating bonds which produce an
amorphous solid with a band gap (Santos et al., 2010).

This approach was not chosen in the creation of the following a-Si supercells. Ribeiro et al.
(2010) performed 15 random bond-switching to the structure in figure 3. Overall 15 different
64-atom samples were made this way and were allowed to relax thru the AIMPRO code. These

are same supercells used in the following studies and they are represented in the picture below.

Fig. 10 All 15 amorphous silicon supercells produced by Ribeiro et al. (2010) and the same ones used in the
following simulations.

The calculated 0.987 density ratio is in good agreement with experimental ratio of 0.982
(Custer et al., 1994). The determined radial distribution (figure 11) is in agreement with
experimental data. In the first case, it has the first peak at 0.230 nm, close to the experimental
value of 0.234 nm (Kugler et al., 1989). The first local minimum in the figure (0.275 nm)
established the bond length cut-off. This parameter is important to the atomic coordination
study. As we can see in table 3, the majority of atoms have 4-fold coordination, but 3- and 5-fold
coordination atoms are also present in different amount across all samples. In these samples, the
number of floating bonds is far more superior to the number of dangling bonds, with according to
Stutzmann and Biegelsen (1988) is unrealistic and explain the large difference between the total

energy (E7) of each amorphous cell, compared to the total energy of the c-Si cell (E¢).
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Table 3 Topological characterization of the 15 cubic supercells of a-Si. Er-Eis the difference in total energy
of the amorphous cell in comparison to the crystalline one. g, is the lattice parameter of the cubic supercell,
N; the number of atoms i-fold coordinated and R, are the number of n-atom rings in the sample (same data
in Ribeiro et al., 2010).

cell ET—EC (eV) ao(nm) N3 N4 N5 R4 R5 Rg R;
crystal 0.000 0.53946 0 64 0 0 0 128 0
1 15.814 0.53505 1 58 5 5 25 78 204
2 20.160 0.53904 0 62 2 10 22 63 201
3 19.269 0.53947 0 60 4 8 23 83 194
4 15.919 0.53606 1 58 5 7 24 73 210
5 18.691 0.53903 3 56 5 4 30 75 199
6 21.119 0.53176 0 54 10 13 29 89 247
7 19.047 0.53706 1 54 9 16 23 76 251
8 17.020 0.53684 1 58 5 6 32 64 217
9 19.189 0.53523 2 56 6 7 33 78 194
10 16.919 0.53596 0 56 8 8 36 76 240
11 18.793 0.53812 0 58 6 5 31 79 212
12 20.487 0.53449 2 50 12 | 12 30 91 257
13 17.554 0.53893 2 62 0 4 29 55 168
14 16.238 0.53746 1 58 5 9 35 72 197
15 13.678 0.53724 0 60 4 3 29 77 213

This difference between total energies can be greater as 21 eV for sample #6, which in this
case equals to a 0.33 eV per atom contribution for this increment in energy. In comparison, a,
does not suffer from great deviation determined for c-Si in section 2.1.

The peak at 109.4° in the bond angle distribution (figure 12) is in excellent agreement with
the experiment (Laaziri et al., 1999). However while the amorphous supercells show the

bond-angle spread across 20°, in the experimental data this not exceeds 10°.
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Fig. 12 The bond angle distribution function

Fig. 11 The radial distribution function for all 15 o
averaged over 15 samples (Ribeiro et al., 2010).

amorphous cell (Ribeiro et al., 2010).
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3.2  Self-Interstitial

In Molecular Dynamics studies (Kong, 2009), a silicon atom is seen to diffuse, while the rest
of the amorphous lattice keeps “underformable”. With this fact in mind, a silicon self-interstitial
can be model as an additional atom in the same volume of the supercell, in which its bonded first
neighbors are 5-fold coordinated. We model this defect by choosing several random sites
throughout all the 15 samples. The tetrahedral interstitial (Si;/) was modeled by placing the
additional atom along the direction of a random chosen Si-Si bond. The hexagonal configuration
(Si) was modeled by placing the additional Si atom in the center of a 6-membered ring. Before
structural relaxation we verified that the majority of atoms that bonded with the interstitial
defect became 5-fold coordinated. There were tested 110 different sites across all samples (about
40 different Si/’ and the remain sites as Si;” ). The resulted formation energies are presented in

table 4.

Table 4 Representative formation energy of the defect when the additional atom was initially at a
hexagonal site (E [I"']) and when was initially at a tetrahedral site (E [/']) are also presented.

cell Er-Ec(eV)  Ep[I"(eV) Er[I'](eV)

1 15.814 +0.303 -0.502
2 20.160 -1.494 -1.111
3 19.269 +0.664 -0.400
4 15.919 -0.949 -0.962
5 18.691 -0.934 -1.479
6 21.119 -0.268 -0.324
7 19.047 +0.828 -0.782
8 17.020 +0.774 -0.301
9 19.189 -0.422 -0.382
10 16.919 -0.175 +0.464
11 18.793 -0.031 -0.873
12 20.487 - -3.364
13 17.554 -0.829 -0.084
14 16.238 +0.756 +1.169
15 13.678 +0.214 +0.734

The correlation between the average formation energy for each sample and the
corresponding difference in total energy, regarding the crystalline sample, was tested resulting in
a Pearson product-moment correlation coefficient (also known as Pearson’s r ) of —0.4 between
the two variables. Appling the guidelines of Cohen (1988) this correlation indicate a medium
linear dependence between these observables, hence the greater Ey -E- became there is a

tendency that the smaller (or more negative) will be the formation energy.
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In 65 structural relaxations (about 60% of the total runs) a widespread structural relaxation
was observed when the additional Si atom was put in place. And these structural relaxations
resulted in the majority of negative formation energy with lead us to believe that in these cases
the silicon self-interstitial was not successfully simulated. We believe that the resulting structures
are in fact new samples with 65 silicon atoms within the same volume as the ones with 64-atom
samples. The structural rearrangement across all structure of each individual sample in order to
accommodate the additional silicon atom in a 4-fold coordination, as well as its neighbors, further
strengths this theory. The resulting new sample has a lower total energy than the original one,

even with an additional atom.

Table 5 Formation energies for the self-interstitials in the lowest total energy supercells.

initially at initially at

cell Er-Ec(eV) — r L
S/if/na/' configurations Er Er
coordination

3- 2 +0.972 +0.753
1 15.814 4- 6 -0.834 -0.874
5- 2 +0.771 +0.142

3- 1 +0.517 -
4 15.919 4- 9 -1.315 -0.962

5- 0 - -
3- 2 +0.757 +0.994
10 16.919 4- 2 -1.108 -0.423
5- 2 - +0.645

3- 2 +1.041 -

14 16.238 4- 2 +0.043 -
5- 2 +1.609 +1.169

3- 1 +0.424 -

15 13.678 4- 2 -0.305 -
5- 3 +1.044 +0.734

In an attempt to find real self-interstitials we directed our analysis to the less energetic a-Si
supercells, expecting a small atomic overall relaxation (table 5). We obtained a few configurations
where the amorphous lattice does not go a great relaxation (like the configuration in figure 13),

but this point needs quantitative criteria to be developed.
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Fig. 13 A representative self-interstitial configuration for a low energetic a-Si supercell. Interstitial silicon
atom highlighted in green.

3.3 Boron related point defects

3.3.1 Substitutional Boron

For the substitutional boron defect in the amorphous samples, different approaches were
applied. First, for every a-Si supercell a random Si atom was replaced by a B atom. When
available, a 3-, 4- and 5-fold coordination Si atoms were picked to be replaced by a B atom and
the structure were allowed to be relaxed. By this we can evaluate the preferred coordination of
the boron species. From 43 analysis runs, roughly 1/3 for each initial atomic coordination for B
atom, after structure relaxation, we found out that the B atom prefers to have 4-fold coordination
as shown in table 6. In most simulations were the B atom was placed in the site of a 3- or 5-fold
coordinated Si atom, a structural rearrangement occurred in order to accommodate the B atom in
a site, not far from the initial one (less than a half-bond length away), but in a way that the B
atom became preferable 4-fold coordinated. Contrarily to the case of self-interstitial modeling,

this rearrangement is localized and not widespread.

Table 6 Percentage of substitutional B atoms with j-fold atomic coordination after successful relaxation.

final coordination
3fold  4-fold  5-fold
17% 72% 11%
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These results are in agreement with the preferred atomic coordination of B atom in a
crystalline medium and in contradiction to what may be expected since boron has only 3 valence
electrons.

Since, in the majority of the structural relaxations, the B atom has 4-fold coordination, it is
expected that they provide each sample with one hole. However, boron doped a-Si has very low
efficiency (Stutzmann et al., 1987). Santos et al. (2010) proposed recently that this low efficiency
is intrinsic to the deformed a-Si lattice, being the hole trapped in distorted-angles regions. We
undergo several simulations across all 15 samples and we did find the same intrinsic low acceptor

efficiency in our samples.

(a) (aSig, )’ (b) (aSis,By, )’ (c) (aSig, By, )

Fig. 14 (a) Localized trapping states in an amorphous a-Si sample. Effect over the localized trapping states
by the substitutional boron defect (in grey) if the defect is far from the hole-trap region (b) and if the defect
is close in the hole-trap region (c).

In the case of an ideal acceptor in c-Si, the hole would be in a shallow state locally extended
around the dopant (Wang, 2009). However this did not happen in our simulations as well as in the
simulations by Santos et al. (2010). In figure 14 we represent the hole location for different B
configurations. For the configuration shown in figure 14 (b) the hole is far from the B atom. In fact
that the hole location is independently of the B position. When the B atom is near of the hole
location [figure 14 (c)] the hole-localization is even stronger.

To determine whether the hole-localization region is induced by the B atoms or it exists even

in the absence of acceptors, we analyzed an undoped 64-atom amorphous cell with positive

charge (aS1'64)+ [figure 14 (a)], i.e., with the same number of electron than the neutral B

configuration(aSi63B)0. The resulting hole-localization is very similar to that of figure 14 (b).

Therefore, the region of interest is not induced by the B atoms but is inherent to the a-Si matrix.
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Its origin is not yet quite understood, but that have been some theories: Pan et al. (2008)
suggests that this hole traps occurs in regions were the bond lengths are slightly smaller than the
overall bond length in the supercell; Both calculations by Bagolini et al. (2009) and Wagner and
Grossman (2008) attribute this highly localized trapping states to distorted small bond angles. In
our samples both previous characteristics occurs in the hole-trap region, were an average bond
angle of ~80° was observed and slightly small bonds (smaller by ~0.2 A).

We have calculated the local frequencies (LVM) for 4-fold coordinated boron. Relatively to
the c-Si the LVM’s are higher, up to 840.19 cm™, and are spread by 250 cm™. The isotopic LVM
shift from '°B to ''B are in average 28 cm™, 27% higher than the correspondent crystalline isotopic

shift.

3.3.2 Boron - Silicon pair

Keeping in mind the findings from the boron-silicon complexes in crystalline silicon (sections
2.3.2 and 2.3.3), to model the boron-silicon pair we started with a random substitutional site in
the amorphous sample and replaced with a B atom (atom #6 in figure 15). An interstitial silicon
atom was placed in the vicinity of the picked substitutional site (atom #12). The majority of its

neighbors became 5-fold coordinated.

(a) (b)
Fig. 15 (a) Initial and (b) final relaxed structure of the boron-silicon pair simulations.
During structure relaxation, the interstitial atom kicked-out a silicon atom (atom #8 in figure
14) and occupied its substitutional site.
The majority of all atoms involved became once again 4-fold coordinated as happened in the
self-interstitial modeling, including the atom #8. In some runs, the kicked-out atom did not
become 4-fold coordinated but 3-fold instead (less than 10% of the runs). A particular run was

used in figure 15 to describe our findings, but this kind of relaxation and final structure were
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observed in all 100 relaxations runs, whatever was the initial silicon interstitial position, regarding
to the substitutional atom. In the final structure the bond length between the B atom and the Si
interstitial was smaller than the others B-Si bonds (no more than 2 A).

The interstitial boron defect was also tested by placing an additional boron atom in the
amorphous samples, throughout 75 different simulations. As observed in the modeling of the
self-interstitial, a widespread structural rearrangement throughout all samples also did occur in
this case. The final result of all structural relaxations performed by the code was always an atom
disposition similar of figure 15 (b). In these runs was not uncommon a final 5-fold coordination to

the B atom, but the 4-fold coordination was the majority (80%).
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Chapter IV
Final Remarks

4.1. Conclusions

We have studied the boron and boron self-interstitial in crystalline and amorphous Si using
the density functional theory — pseudopotential code (AIMPRO).

All relevant structural and electronic properties of c-Si were determined. The lattice constant
and his corresponding bulk modulus (as well as its first derivative over pressure) were in
agreement with experimental data.

The crystalline silicon modeling resulted in excellent results also in agreement with
experimental data. The lowest formation energy was calculated for the <110>-split interstitial.
This finding is in line with Zhu et al., 1996.

Besides structural optimization, for the substitutional boron, its local vibrational modes were
calculated at 633 cm™! and 610 cm™1, for '°B and B isotopes respectively. These findings are in
good agreement with experiments (646 cm™! and 623 cm™1, respectively), which indicate the
same isotopic deviation of 23 cm™1. The (-/0) electrical level was determined, using gallium as a
marker, to be 32 meV, a better result from the previous study (Oliveira, 2008) but still denoting
some underestimation of the experimental 45 meV value.

During the modeling of the interstitial boron defect we denote a small structural distortion,
as expected since the B atom has a smaller atomic radius. The binding energy of the tetrahedral
defect was obtained within the experimental interval previously reported (0.28 eV within the 0.2
to 0.3 eV experimental value). The calculated formation energies were all underestimated in

comparison with Hakala et al. (2000) but we did confirmed that interstitial boron configurations

are energetically less favorable than B, —Si, defects.

Amorphous Si studies

We have modeled the self-interstitial, substitutional boron and B-Si complexes in 64 Si atom
supercells. We have used 15 amorphous supercells (Ribeiro et al., 2010) that was proven by
topological and vibrational characterization that these supercells have features like radial

distribution, bond angle distribution, vibrational density of states, Raman spectra and electronic
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density of states in accordance with experimental data which lead us to believe that they in fact
are good samples for our first modeling studies in this kind of material.

For the silicon self-interstitial defect in a-Si modeling we add a Si atom in several random
sites. During the majority of the 100 structural relaxations, all interstitial atoms and its
corresponding neighbors took 4-fold atomic coordination, enabled by a widespread structural
rearrangement that took the code more than 80 iterations to achieve an optimal structure. The
average negative formation energy, in conjunction with the widespread structural
rearrangements suffered by the samples, leads us to believe that in these particular runs we did
not successfully modeled the silicon self-interstitial defect. Instead we get a new kind of 65-atom
amorphous samples with the same volume but with a lower total energy than the corresponding
64-atom sample.

During the study of the boron substitutional defect we realize that the B atom prefers a
4-fold atomic coordination. We also confirmed the existence of intrinsic localized hole-traps in our
samples. We observed all features that had been indicated as causes for this phenomenon:
localized small bonds and distorted angles. We confirm the presence of a substitutional B atom
near the vicinity of these traps further enhances its localized effect. These trapping states lower
the doping efficiency, which is a major drawback in the practical use of a-Si.

The boron-silicon pair was also modeled and some kind of a kick-out mechanism was
observed during structure relaxation. In the majority of the computational runs, the Si interstitial
atom kicks-out a substitutional atom, occupies its place, but the kicked-out atom will occupy a
near non-substitutional site but in a way that its 4-fold atomic coordination prevails as well as the

atomic coordination of its neighbors. The interstitial boron defect was also tested throughout 75

runs and the resulting structure was similar to the one from B —Si.. These defects requires

further understanding.

4.2. Future Work

During our studies in the amorphous samples we encounter some minor irregularities with
the structure of the supercells. We notice that atoms #1 and #2 did not significantly change his
positions across all samples which may indicate a minor glitch in the WWW algorithm or
insufficient number of performed bond switches. Also we notice that, at the borders of the
supercells, some crystalline features were visible. Increasing the number of random bond
switches to 100 may overcome this situation but nevertheless this finding needs more attention

and further study in order to insure the truth amorphisation of the samples. Besides improving
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the algorithm for amorphous cells generation, 1000 atoms or even bigger amorphous cells should
be generated and studied, taking advantage from the latest and fastest AIMPRO code, which
implements a basis functions filtering scheme (Rayson and Briddon, 2009). This will enable a more
accurate and wide study of defects in a-Si.

The self-interstitial in a-Si needs a more quantitative analysis. We have to evaluate the
overall lattice relaxation to judge if we obtain a real self-interstitial or just a overall lattice
relaxation to a lowest metastable configuration.

Further understanding of B complexes in a-Si and its behavior is definitely a subject for future
works. It will also be quite interesting seeing these same techniques used in other materials, like
amorphous germanium or other amorphous alloys, like SiGe (Edelman et al., 2008).

These same studies might be performed in samples generated with algorithm adaptations
from the original WWW mechanism, especially samples with a band gap (Barkema and Mousseau,

2000).
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